IRACEBOT

Verification & Validation Plan

Deliverable 1.5

Deliverable Title	D1.5 Verification & Validation Plan
Deliverable Lead:	INVITE GmbH
Related Work Package:	WP1: Requirements management and verification preparation
Related Task(s):	T1.4: Verification plan
Author(s):	CH. Coulon
Dissemination Level:	Private
Due Submission Date:	2024-09-30
Actual Submission:	2024-09-25
Project Number	101017089
Instrument:	Research and innovation action
Start Date of Project:	01.01.2021
Duration:	51 months
Abstract	This verification and validation plan outlines the approach used to ensure that TraceBot meets its design requirements and functions as expected. Its goal is to ensure that all relevant parties are informed and involved in the validation process.

Version	Date	Modified by	Modification reason
v.01	03.06.2024	Coulon, INV	Document created with first batch of test cases
v.02	17.06.2024	Coulon, INV	Added test cases from AST
v.03	19.06.2024	Coulon, INV	Added test cases for clamp
v.04	20.06.2024	Coulon, INV	Updated the test case format to be more concise
v.05	20.06.2024	Coulon, INV	Added test cases for the tube insertion and kit unpacking based on partner feedback
v.06	21.06.2024	Coulon, INV	Added executive summary
v.07	24.06.2024	Coulon, INV	Added introduction
v.08	27.06.2024	Coulon, INV	Updated tests using feedback from AST
v.09	20.08.2024	Mania, TUB	Internal revision
V.10	22.08.2024	Raveendran, AST	Internal revision
V1.0	02.09.2024	Coulon, INV	Final Version

Versioning and Contribution History

Table of Contents

Ver	sioning and Contribution History	2
Tab	le of Contents	3
1	Executive Summary	4
2	Introduction	5
3	Scenarios	6
4	Programs	7
5	Test Cases	7
5.1	Canister handling	8
5.2	Needle handling	.14
5.3	Clamp handling	.16
5.4	Miscellaneous	.16
6	Deviations from the workplan	. 18
7	Conclusion	. 19
8	References	.20

RESTRICTED

1 Executive Summary

This verification and validation plan outlines the structured approach used to ensure that TraceBot meets its design requirements and functions as expected. The plan is intended for stakeholders at various levels within our partner organizations, third parties interested in adapting TraceBot technologies, and regulatory bodies. Its goal is to ensure that all relevant parties are informed and involved in the validation process. It forms the basis for a thorough and transparent acceptance of TraceBot within the pharmaceutical industry.

2 Introduction

Verification and validation are essential processes to guarantee that a system fulfills its requirements. This comprehensive verification and validation plan outlines the procedures for ensuring the functionality and quality of the TraceBot demonstrator.

Two distinguishing features of TraceBot are its built-in verification and traceability capabilities. Builtin verification allows the system to automatically confirm the successful execution of a task (or detect a failure). Traceability enables the system to provide documented evidence of a successful (or unsuccessful) program execution via the generation of an audit trail. Given these capabilities, this verification and validation plan pays special attention to ensuring the system can robustly detect and document failures. Phrased differently, a key objective of this plan is to "verify TraceBot's built-in verification". Consequently, the tests outlined in this document often push the system beyond typical conditions. Forced failures, for example, are frequently used to challenge the system and demonstrate its robust verification and traceability capabilities.

The scope of this plan includes the definition of scenarios, programs, and test cases used to validate the system. Each scenario outlines the setup of the robot workspace for testing, while each program specifies the actions the robot should perform. A test case combines a scenario and program with a success criterion to validate specific aspects of the system's functionality. The system is considered to be validated if it passes all test cases.

Given the research-oriented nature of the TraceBot project, this document aims to validate the core technologies and novel capabilities developed for TraceBot. As such it does not consider standard failure modes like power outages and malfunctioning computer hardware that are normally considered as part of a Failure Modes and Effects Analysis (FMEA). A more comprehensive FMEA was developed by AST. Note, however, that even though the TraceBot FMEA considers a wider range of failure modes than this document, it too focuses on TraceBot's core contributions since a full FMEA would require a significant time investment for aspects that are not directly related to the core development of TraceBot (see D6.3 "Construction of mechanical framework" for details).

3 Scenarios

This section defines four base scenarios that describe how the robot's environment should be set up before running one of the tests in Section 5. The first two scenarios describe setups that are used to test individual actions, operations, or other isolated aspects of the system. The third and fourth scenario correspond to steps in the sterility testing use case targeted by TraceBot¹. They describe setups encountered during the system's normal operation. If a test requires deviations in order to force the system to fail or automatically detect a failure, the necessary scenario modifications are outlined as part of the corresponding tests in Section 5.

Name	S1 Empty workspace
Description	\circ There are no objects in the robot workspace.

Name	S2 Pump only
Description	 The sterility testing pump is set up in the robot workspace and can be seen by the camera. Apart from the sterility testing pump, no other objects are present in the robot workspace.

Name	S3 Kit mounting
Description	• The sterility testing pump is set up in the vicinity of the robot.
	• The sterility testing kit has been unpacked. The canisters, needle and
	tube are placed in the vicinity of the robot.
	• There are no other objects in the vicinity of the robot and all objects can
	be seen by the camera.
	• The canisters are standing upright.
	• The tube connects the two canisters with the needle.
	• The canisters, needle and tube have sufficient distance to other objects
	i.e. they can be picked up without causing a collision.

Name	S4 Needle insertion
Description	• The sterility testing pump is set up in the vicinity of the robot.
	• The canisters have been inserted into the trays of the pump.
	\circ The tube connects the two canisters with the needle.
	\circ The tube has been inserted into the pump.
	\circ The needle (including the blue cap) is placed next to the pump. It has
	sufficient distance to other objects, i.e. it can be picked up without
	causing a collision.
	\circ The bottle is placed in the vicinity of the robot (upright orientation).
	• All of the above-mentioned objects can be seen by the camera.
	\circ Apart from the above-mentioned objects, no other objects are present
	in the robot workspace.

¹ https://tracebot.gitlab.io/tracebot_showcase/root_index/

4 Programs

This section provides an overview of the programs used to validate the TraceBot system.

Name	Locate canister
Description	Uses the computer vision subsystem to locate all canisters in the scene. The
	robot does not move.

Name	Grab canister
Description	Uses the computer vision subsystem to locate all canisters in the scene.
	Afterwards, the robot grabs one of the canisters.

Name	Insert canister
Description	Uses the computer vision subsystem to locate all canisters in the scene. Afterwards, the robot grabs two canisters and inserts them into the trays of the sterility testing pump.

Name	Needle insertion
Description	Uses the computer vision subsystem to locate the needle and bottle. Afterwards the robot picks up the needle with one of its arms and removes the needle cap using the other arm. Then, the robot inserts the needle into the bottle.

Name	Clamp localization
Description	Uses the computer vision subsystem to locate all clamps, which are placed on
	the tube, in the scene. The robot does not move.

Name	Clamp closure
Description	The robot closes one of the clamps using the CEA gripper. The clamp is placed
_	in a fixed position using a custom holder, i.e. it does not need to be located.

Name	Tube insertion
Description	The robot inserts the tube into the sterility testing pump using its two arms/grippers. The tube is manually inserted into the robot grippers such that the robot holds one end of the tube in each gripper.

Name	Kit opening
Description	The robot opens a sterility testing kit by removing the cover from the plastic
	packaging.

5 Test Cases

The system is successfully validated if it passes all of the tests in this section. Each test consists of its name, the list of subsystems targeted by the test, the scenario in which the test should be run, the

Horizon 2020

external influences the system is exposed to, the program that should be run and a criterion that defines the requirements for successfully completing the test. The considered subsystems include the tactile verification, computer vision, digital twin and audit trail subsystems that make up TraceBot. The tests are grouped into four categories: canister handling, needle handling, clamp handling and miscellaneous, where the latter category consists of isolated tests for the tube insertion and kit opening steps.

5.1 Canister handling

Name	A1 Canister in one of two predefined positions (1/2)
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• There are two predefined locations with good visibility where a canister
	can be placed so that it can be picked up without causing a collision with
	other objects.
	• A canister is placed in the first of the two predefined positions.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects the canister.
	\circ A canister is spawned in the digital twin. The pose of the spawned canister
	matches the pose of the real-world canister.
	• The audit trail indicates a successful execution.

Name	A2 Canister in one of two predefined positions (2/2)
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• There are two predefined locations with good visibility where a canister
	can be placed so that it can be picked up without causing a collision with
	other objects.
	• A canister is placed in the second of the two predefined positions.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects the canister.
	• A canister is spawned in the digital twin. The pose of the spawned canister
	matches the pose of the real-world canister.
	 The audit trail indicates a successful execution.

Name	A3 Canister near edge of table
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	\circ A canister is placed near the edge of the table (close to the robot
	base/bottom of the camera view but still fully visible).
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects the canister.
	• A canister is spawned in the digital twin. The pose of the spawned canister
	matches the pose of the real-world canister.
	• The audit trail indicates a successful execution.

Name	A4 Two canisters in predefined positions
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• There are two predefined locations with good visibility where a canister
	can be placed so that it can be picked up without causing a collision with
	other objects.
	\circ A canister is placed in each of the predefined positions.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects both canisters.
	• Two canisters are spawned in the digital twin. The poses of the spawned
	canisters match the poses of the real-world canisters.
	• The audit trail indicates a successful execution.

Name	A5 Touching canisters
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• Two canisters are placed in the robot workspace.
	• The sides of the two canisters touch each other.
	• The canisters do not obstruct each other from the camera view.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects both canisters.
	• Two canisters are spawned in the digital twin. The poses of the spawned
	canisters match the poses of the real-world canisters.
	• The audit trail indicates a successful execution.

Name	A6 Closeby canisters
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• Two canisters are placed in the robot workspace.
	\circ The canisters are placed next to each other with one canister slightly in
	front of the other.
	• The canisters do not obstruct each other from the camera view.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects both canisters but halts due to the
	canisters being too close to each other.
	\circ Two canisters are spawned in the digital twin. The poses of the spawned
	canisters match the poses of the real-world canisters.
	• The audit trail indicates a failed execution because the system is not able
	to grasp the canisters.

Name	A7 Canister partially occluded by another canister
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• Two canisters are placed in the robot workspace.

	• One of the canisters partially occludes the other.
External influences	None
Program	Locate canister
Success criterion	• The system either successfully detects both canisters or halts due to not
	being able to detect the canisters.
	• If the system is able to detect both canisters:
	 The two canisters are spawned in the digital twin. The poses of the spawned canisters match the poses of the real-world canisters. The audit trail indicates a successful execution.
	• Otherwise:
	• The audit trail indicates a failed execution because the canisters cannot be detected.

Name	A8 Canister partially occluded by fiducial marker
Subsystems	Computer vision, audit trail
Scenario	S2 Pump only but with the following changes:
	\circ A single canister is placed in the robot workspace.
	• The canister is partially occluded by a fiducial marker.
External influences	None
Program	Locate canister
Success criterion	• The system halts because the canister cannot be reliably detected.
	• The audit trail indicates a failed execution because the canister cannot be
	detected.

Name	A9 Canister at edge of workspace
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
	\circ The canister is placed at the right edge of the workspace.
	• The right half of the canister is not visible/outside the camera's field of
	view.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects the canister.
	• A canister is spawned in the digital twin. The pose of the spawned canister
	matches the pose of the real-world canister.
	• The audit trail indicates a successful execution.

Name	A10 Canister occluded by transparent box
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
	\circ A transparent box is placed in front of the canister. The canister can be
	seen through the transparent box.
External influences	None
Program	Locate canister
Success criterion	• The system successfully detects the canister.
	• A canister is spawned in the digital twin. The pose of the spawned canister
	matches the pose of the real-world canister.

Name	A11 No canister
Subsystems	Computer vision, audit trail
Scenario	S2 Pump only (without changes)
External influences	None
Program	Locate canister
Success criterion	• The system halts because the canister cannot be detected.
	• The audit trail indicates a failed execution due to the missing canister.

Name	A12 Canister lying on its side (side view)
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
	• The canister is lying on its side and facing the camera with its side.
External influences	None
Program	Locate canister
Success criterion	• The system halts because one of the canisters is in an unexpected
	orientation.
	o A canister is spawned in the digital twin. The pose of the spawned canister
	matches the real-world pose (lying on its side).
	• The audit trail indicates a failed execution due to an unexpected canister
	orientation.

A13 Canister lying on its side (front view)
Computer vision, digital twin, audit trail
S2 Pump only but with the following changes:
• A single canister is placed in the robot workspace.
• The canister is lying on its side and facing the camera with its front.
None
Locate canister
 The system halts because one of the canisters is in an unexpected orientation. A canister is spawned in the digital twin. The pose of the spawned canister matches the real-world pose (lying on its side). The audit trail indicates a failed execution due to an unexpected canister orientation.

Name	A14 Upside down canister
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
	• The canister is leaning upside down against the sterility pump.
External influences	None
Program	Locate canister
Success criterion	• The system halts because one of the canisters is in an unexpected
	orientation.

0	A canister is spawned in the digital twin. The pose of the spawned canister
	matches the real-world pose (leaning upside down against the pump).
0	The audit trail indicates a failed execution due to an unexpected canister
	orientation.

Name	A15 Canister in center of right side of robot workspace
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
	\circ The canister is placed in the center of the right side of the robot
	workspace.
External influences	None
Program	Grab canister
Success criterion	• The system successfully detects the canister and picks it up.
	• A canister is spawned in the digital twin. The pose of the spawned canister
	matches the real-world pose.
	• The audit trail indicates a successful execution.

Name	A16 Canister in center of robot workspace
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
	\circ The canister is placed in the center of the robot workspace, between the
	left and right gripper.
External influences	None
Program	Grab canister
Success criterion	• The system successfully detects the canister and picks it up.
	• A canister is spawned in the digital twin. The pose of the spawned canister
	matches the real-world pose at all times.
	• The audit trail indicates a successful execution.

Name	A17 Disappearing canister
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.
External influences	The canister is manually removed from the robot workspace after it has been
	detected by the vision system.
Program	Grab canister
Success criterion	• The system halts because the canister could not be picked up.
	\circ A canister is spawned in the digital twin. The pose of the spawned canister
	matches the real-world pose at the time of detection.
	• The audit trail indicates a failed execution due to a failed canister pick up.

Name	A18 Moving pump
Subsystems	Computer vision, digital twin, audit trail
Scenario	S2 Pump only but with the following changes:
	• A single canister is placed in the robot workspace.

External influences	The sterility pump is manually moved after it has been detected by the vision	
	system to force the canister insertion to fail.	
Program	Canister insertion	
Success criterion	• The system should halt due to a failed canister insertion.	
	• The digital twin indicates a successful canister insertion, as it is not aware	
	that the real-world pump has been moved.	
	• The real-world canister insertion fails and the canister is dropped.	
	• The audit trail indicates a failed execution due to a pose mismatch	
	between the canister in the digital twin and the real-world after the	
	insertion attempt.	

Name	A19 Sliding canister	
Subsystems	Tactile verification, audit trail	
Scenario	S3 Kit mounting (without changes)	
External influences	The gripper is hardcoded to open slightly while moving one of the canisters	
	(thereby loosening its grip on the canister and causing the canister to slip).	
Program	Canister insertion	
Success criterion	• The system halts due to an error during the canister insertion.	
	• The tactile verification subsystem detects that the canister is slipping.	
	\circ The audit trail indicates that the canister was not grasped in a secure	
	manner.	

Name	A20 Canister offset		
Subsystems	Computer vision, digital twin, audit trail		
Scenario	S3 Kit mounting (without changes)		
External influences	One of the canisters is manually removed from the tray of the pump and		
	placed next to the pump after it has been inserted into the tray by the robot.		
Program	Canister insertion		
Success criterion	• Start of program:		
	• The computer vision subsystem detects all objects in the scene.		
	 All objects in the scene are spawned in the digital twin. 		
	• After inserting the canister and manually removing it from the tray:		
	• The system halts due to an unexpected real-world canister pose.		
	• The audit trail indicates a failed execution due to a pose mismatch.		

Name	A21 Tubes caught in an obstacle	
Subsystems	Tactile verification, audit trail	
Scenario	S3 Kit mounting (without changes)	
External influences	While manipulating one of the canisters, the tube connecting the canisters and needle is manually pulled to simulate the tubes being caught in an obstacle.	
Program	Canister insertion	
Success criterion	 The system halts because the tactile verification subsystem detects that the canister is not grasped in a secure manner. The audit trail indicates a failed execution. 	

Horizon 2020

5.2 Needle handling

Name	B1 Needle insertion with normal bottle		
Subsystems	Computer vision, tactile verification, digital twin, audit trail		
Scenario	S4 Needle insertion (without changes)		
External influences	None		
Program	Needle insertion		
Success criterion	• The system successfully inserts the needle into the bottle.		
	• The computer vision subsystem detects all objects in the scene.		
	• The tactile verification subsystem detects the needle insertion.		
	\circ All objects in the scene are spawned in the digital twin. The poses of the		
	spawned objects match their real-world counterparts.		
	• The audit trail indicates a successful execution.		

Name	B2 Needle insertion with manipulated bottle (1)	
Subsystems	Computer vision, tactile verification, digital twin, audit trail	
Scenario	S4 Needle insertion but with the following changes:	
	• The bottle cap/membrane is missing	
External influences	None	
Program	Needle insertion	
Success criterion	• The system halts after a failed attempt to insert the needle into the bottle.	
	• The computer vision subsystem detects all objects in the scene.	
	• The tactile verification subsystem detects that the needle insertion failed.	
	\circ All objects in the scene are spawned in the digital twin. The poses of the	
	spawned objects match their real-world counterparts.	
	• The audit trail indicates a failed execution because the force required to	
	insert the needle is outside of the expected bounds.	

Name	B3 Needle insertion with manipulated bottle (2)	
Subsystems	Computer vision, tactile verification, digital twin, audit trail	
Scenario	S4 Needle insertion but with the following changes:	
	• The bottle cap/membrane is replaced with aluminium foil	
External influences	None	
Program	Needle insertion	
Success criterion	• The system halts after a failed attempt to insert the needle into the bottle.	
	• The computer vision subsystem detects all objects in the scene.	
	• The tactile verification subsystem detects that the needle insertion failed.	
	\circ All objects in the scene are spawned in the digital twin. The poses of the	
	spawned objects match their real-world counterparts.	
	• The audit trail indicates a failed execution because the force required to	
	insert the needle is outside of the expected bounds.	

Name	B4 Needle insertion without bottle
Subsystems	Computer vision, digital twin, audit trail
Scenario	S4 Needle insertion but with the following changes:
	\circ The bottle is missing
External influences	None
Program	Needle insertion

Success criterion	0	The system halts because the bottle cannot be detected.
	0	The computer vision subsystem detects all objects in the scene.
	0	All objects in the scene are spawned in the digital twin. The poses of the
		spawned objects match their real-world counterparts.
	0	The audit trail indicates a failed execution due to the missing bottle.

Name	B5 Needle insertion without needle		
Subsystems	Computer vision, digital twin, audit trail		
Scenario	S4 Needle insertion but with the following changes:		
	• The needle is missing		
External influences	None		
Program	Needle insertion		
Success criterion	• The system halts because the needle cannot be detected.		
	• The computer vision subsystem detects all objects in the scene.		
	\circ All objects in the scene are spawned in the digital twin. The poses of the		
	spawned objects match their real-world counterparts.		
	• The audit trail indicates a failed execution due to the missing needle.		

Name	B6 Disappearing needle	
Subsystems	Computer vision, digital twin, audit trail	
Scenario	S4 Needle insertion (without changes)	
External influences	The needle is manually removed from the robot workspace after it has been	
	detected by the vision system.	
Program	Needle insertion	
Success criterion	\circ The system halts because the needle could not be picked up.	
	• The needle is spawned in the digital twin. The pose of the spawned needle	
	matches the real-world pose at the time of detection.	
	• The audit trail indicates a failed execution due to a failed needle pick up.	

Name	B7 Missing needle cap		
Subsystems	Computer vision, digital twin, audit trail		
Scenario	S4 Needle insertion but with the following changes:		
	• The needle cap has already been removed		
External influences	None		
Program	Needle insertion		
Success criterion	• The system halts due to the missing needle cap.		
	• The computer vision subsystem detects all objects in the scene.		
	• All objects in the scene are spawned in the digital twin. The poses of the		
	spawned objects match their real-world counterparts.		
	• The audit trail indicates a failed execution due to the missing needle cap.		

Name	B8 Sliding needle
Subsystems	Tactile verification, audit trail
Scenario	S4 Needle insertion (without changes)
External influences	The gripper is hardcoded to open slightly while moving the needle (thereby loosening its grip on the needle and causing the needle to slip).
Program	Needle insertion
Success criterion	• The system halts due to an error during the needle insertion.

RESTRICTED

 The tactile verification subsystem detects that the needle is slipping. The audit trail indicates that the needle was not grasped in a secure
manner.

5.3 Clamp handling

Name	C1 Clamp localization (upright orientation)
Subsystems	Computer vision, digital twin
Scenario	S1 Empty workspace but with the following changes:
	• The red and white clamp are detached from the tube and placed in the
	robot workspace.
	\circ The clamps are in an upright orientation and can be seen by the camera.
External influences	None
Program	Clamp localization
Success criterion	• The system successfully detects both clamps.
	• Two clamps are spawned in the digital twin. The poses of the spawned
	clamps match the poses of their real-world counterparts.

Name	C2 Clamp localization (lying on their side)
Subsystems	Computer vision, digital twin
Scenario	S1 Empty workspace but with the following changes:
	\circ The red and white clamp are detached from the tube and placed in the
	robot workspace.
	\circ The clamps are lying on their side and can be seen by the camera.
External influences	None
Program	Clamp localization
Success criterion	• The system successfully detects both clamps.
	\circ Two clamps are spawned in the digital twin. The poses of the spawned
	clamps match the poses of their real-world counterparts.

Name	C3 Clamp closure
Subsystems	Tactile verification
Scenario	S1 Empty workspace but with the following changes:
	• A single clamp with a small piece of the tube is placed in a holder.
	• The clamp and holder are placed in a predefined position close to the robot.
External influences	None
Program	Clamp closure
Success criterion	• The system closes the clamp using the robot gripper.
	• The tactile verification system detects the clamp closure event.

5.4 Miscellaneous

Name	D1 Tube insertion
Subsystems	Constrained-based robot control framework
Scenario	S2 Pump only (without changes)
External influences	A sufficiently large piece of the tube (~40 cm) is manually inserted into the
	robot grippers such that the robot holds one end of the tube in each gripper.

Horizon 2020

D1.5 Verification & Validation Plan

Program	Tube insertion
Success criterion	The system successfully inserts the tube into the sterility pump.

Name	D2 Kit opening
Subsystems	Computer vision, tactile manipulation
Scenario	S1 Empty workspace with the following changes:
	• A sealed sterility testing kit is placed in the robot workspace.
	\circ The kit is placed such that the removable cover is pointing up.
External influences	None
Program	Kit opening
Success criterion	The system successfully removes the cover of the sterility testing kit using its
	grippers. The contents of the kit remain in their packaging.

6 Deviations from the workplan

None

7 Conclusion

This document outlined the verification and validation plan for TraceBot. The plan ensures that TraceBot is thoroughly tested and is intended to provide stakeholders and other interested parties with confidence in the performance and reliability of the technologies developed within the TraceBot project. To this end, a number of different scenarios, programs, and test cases that focus on the core technologies and novel capabilities of the TraceBot system were defined. The test cases cover a variety of actions including the canister handling, needle insertion, clamp closure, tube insertion and kit unpacking steps of the sterility testing use case. Special attention was given to the built-in verification and traceability features that distinguish TraceBot from other solutions. In doing so, this plan established a basis for further acceptance, fostering trust in TraceBot's accuracy and dependability.

D1.5 Verification & Validation Plan

8 References

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

